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Communications System Toolbox Product Description
Design and simulate the physical layer of communications systems

Communications System Toolbox provides algorithms and apps for the analysis, design,
end-to-end simulation, and verification of communications systems in MATLAB® and
Simulink®. Toolbox algorithms, including channel coding, modulation, MIMO, and
OFDM, enable you to compose a physical layer model of your system. You can simulate
your models to measure performance.

The system toolbox provides constellation and eye diagrams, bit-error-rate, and other
analysis tools and scopes for validating your designs. These tools enable you to analyze
signals, visualize channel characteristics, and obtain performance metrics such as error
vector magnitude (EVM). Channel and RF impairment models and compensation
algorithms, including carrier and symbol timing synchronizers, enable you to realistically
model your link-level specifications and compensate for the effects of channel
degradations.

Using Communications System Toolbox hardware support packages, you can connect
your transmitter and receiver models to radio devices and verify your designs with over-
the-air testing. The system toolbox supports fixed-point arithmetic and C or HDL code
generation.

Algorithms are available as MATLAB functions, System objects, and Simulink blocks.

Key Features
• Algorithms for designing the physical layer of communications systems, including

channel coding, modulation, OFDM, MIMO, equalization, and synchronization
• Analysis tools and measurement scopes, including a bit-error-rate app, constellation

diagrams, and eye diagrams
• Channel models, including AWGN, multipath Rayleigh fading, Rician fading, MIMO

multipath fading, and LTE MIMO multipath fading
• Basic RF impairment models, including nonlinearity, phase noise, thermal noise, and

phase and frequency offsets
• Hardware support packages for connecting waveforms to radio devices and verifying

designs with over-the-air testing
• GPU-enabled algorithms for computationally intensive algorithms such as Turbo,

LDPC, and Viterbi decoders

1 Introduction
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• Support for fixed-point modeling and C and HDL code generation

 Communications System Toolbox Product Description

1-3



System Setup
In this section...
“Required Products” on page 1-4
“Expected Background” on page 1-4

Required Products

The Communications System Toolbox product is part of a family of MathWorks®
products. You need to install several products to use this product. For more information
about the required products, see the MathWorks website, at https://
www.mathworks.com/products/communications/requirements.html.

Expected Background

This documentation assumes that you already have background knowledge in the subject
of digital communications. If you do not yet have this background, then you can acquire it
using a standard communications text or the books listed in the Selected Bibliography
subsections that accompany many topics.

The discussion and examples in this section are aimed at new users. Continue reading
and try the examples. Then, read the subsequent content that pertains to your specific
areas of interest. As you learn which System object™, block, or function you want to use,
refer to the online reference pages for more information.

1 Introduction
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Configure the Simulink Environment for Communications Models

About the Communications System Toolbox Simulink Model Template

The Communications System Toolbox Simulink model template lets you automatically
configure the Simulink environment with the recommended settings for communications
modeling. Communications System Toolbox Simulink model templates enable reuse of
settings, including configuration parameters. The model you create from the template
uses best practices and takes advantage of previous solutions to common problems which
helps you get started more quickly.

For more information on Simulink model templates, see “Create a Model” (Simulink).

Create Model Using the Communications System Toolbox Simulink
Model Template

To create a new blank model and open the library browser:

1 On the MATLAB Home tab, click Simulink, and choose the Communications
System model template.

2 Click Create Model to create an empty model with settings suitable for use with
Communications System Toolbox. The new model opens. To access the library
browser, click the Library Browser button on the model toolbar.

 Configure the Simulink Environment for Communications Models
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The new model using the template settings and contents appears in the Simulink Editor.
The model is only in memory until you save it.

The Communications System Toolbox Simulink Model Template

When you create a model by choosing the Communications System Toolbox Simulink
model template, the model is configured to use the settings recommended for
communications modeling. Some of these settings are:

Configuration Parameter Setting
'SingleTaskRateTransMsg' 'error'
'Solver' 'VariableStepDiscrete'
'EnableMultiTasking' 'Off'

1 Introduction
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Configuration Parameter Setting
'MaxStep' 'auto'
'StartTime' '0.0'
'StopTime' 'inf'
'FixedStep' 'auto'
'SaveTime' 'off'
'SaveOutput' 'off'
'AlgebraicLoopMsg' 'error'
'RTWInlineParameters' 'on'
'BooleanDataType' 'off'
'UnnecessaryDatatypeConvMsg' 'none'
'LocalBlockOutputs' 'off'

 Configure the Simulink Environment for Communications Models
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Access the Block Libraries
To view the block libraries for the products you have installed, type simulink at the
MATLAB prompt (or click the Simulink button  on the MATLAB toolbar). The
Simulink Library Browser appears.

Simulink Library Browser

The left pane displays the installed products, each of which has its own library of blocks.
To open a library, click the + sign next to the product name in the left pane. This displays
the contents of the library in the right pane.

You can find the blocks you need to build communications system models in the
Communications System Toolbox, DSP System Toolbox™, and Simulink libraries.

Alternatively, you can access the main Communications System Toolbox block library by
entering commlib at the MATLAB command line.

1 Introduction
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Communications System Toolbox Supported Hardware

As of this release, Communications System Toolbox supports the following hardware.

Support Package Vendor Earliest
Release
Available

Last Release
Available

ADALM-Pluto Radio Analog
Devices®

R2017a Current

RTL-SDR Radio NooElec™ R2013b Current
USRP® Embedded Series Radio Ettus

Research®
R2016b Current

USRP® Radio Ettus
Research

R2011b Current

Xilinx Zynq-Based Radio Xilinx® R2014b Current

For a list of support packages you can use with Communications System Toolbox, visit
the Hardware Support Catalog for Communications System Toolbox.

 Communications System Toolbox Supported Hardware
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System Simulation

• “256-QAM with Simulink Blocks” on page 2-2
• “16-QAM with MATLAB Functions” on page 2-11
• “Iterative Design Workflow for Communication Systems” on page 2-32
• “QPSK and OFDM with MATLAB System Objects” on page 2-61
• “Accelerating BER Simulations Using the Parallel Computing Toolbox” on page 2-65
• “What Is Different About Using Communications System Toolbox Online?”

on page 2-69

2



256-QAM with Simulink Blocks
In this section...
“Section Overview” on page 2-2
“Opening the Model” on page 2-2
“Overview of the Model” on page 2-3
“Quadrature Amplitude Modulation” on page 2-4
“Run a Simulation” on page 2-5
“Display the Error Rate” on page 2-6
“Set Block Parameters” on page 2-7
“Display a Phase Noise Plot” on page 2-9

Section Overview

This section describes an example model of a communications system. The model
displays a scatter plot of a signal with added noise. The purpose of this section is to
familiarize you with the basics of Simulink models and how they function.

Opening the Model

To open the model, first start MATLAB. In the MATLAB Command Window, enter
doc_commphasenoise at the prompt. This opens the model in a new window, as shown
in the following figure.

2 System Simulation
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Overview of the Model

The model shown in the preceding section, “Opening the Model” on page 2-2, simulates
the effect of phase noise on quadrature amplitude modulation (QAM) of a signal. The
Simulink model is a graphical representation of a mathematical model of a
communication system that generates a random signal, modulates it using QAM, and
adds noise to simulate a channel. The model also contains components for displaying the
symbol error rate and a scatter plot of the modulated signal.

The blocks and lines in the Simulink model describe mathematical relationships among
signals and states:

• The Random Integer Generator block, labeled Random Integer, generates a signal
consisting of a sequence of random integers between zero and 255

• The Rectangular QAM Modulator Baseband block, to the right of the Random Integer
Generator block, modulates the signal using baseband 256-ary QAM.

• The AWGN Channel block models a noisy channel by adding white Gaussian noise to
the modulated signal.

• The Phase Noise block introduces noise in the angle of its complex input signal.

 256-QAM with Simulink Blocks
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• The Rectangular QAM Demodulator Baseband block, to the right of the Phase Noise
block, demodulates the signal.

In addition, the following blocks in the model help you interpret the simulation:

• The Constellation Diagram block, labeled AWGN plus Phase Noise, displays a scatter
plot of the signal with added noise.

• The Error Rate Calculation block counts symbols that differ between the received
signal and the transmitted signal.

• The Display block, at the far right of the model window, displays the symbol error
rate (SER), the total number of errors, and the total number of symbols processed
during the simulation.

All these blocks are included in Communications System Toolbox. You can find more
detailed information about these blocks by right-clicking the block and selecting Help
from the context menu.

Quadrature Amplitude Modulation

This model simulates quadrature amplitude modulation (QAM), which is a method for
converting a digital signal to a complex signal. The model modulates the signal onto a
sequence of complex numbers that lie on a lattice of points in the complex plane, called
the constellation of the signal. The constellation for baseband 256-ary QAM is shown in
the following figure.

2 System Simulation
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Constellation for 256-ary QAM

Run a Simulation

To run a simulation, click on the Run button at the top of the model window. The
simulation stops automatically at the Stop time, which is specified in the
Configuration Parameters dialog box. You can stop the simulation at any time by
selecting Stop from the Simulation menu at the top of the model window (or, on
Microsoft Windows, by clicking the Stop button on the toolstrip).

When you run the model, a new window appears, displaying a scatter plot of the
modulated signal with added noise, as shown in the following figure.

 256-QAM with Simulink Blocks
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Scatter Plot of Signal Plus Noise

The points in the scatter plot do not lie exactly on the constellation shown in the figure
because of the added noise. The radial pattern of points is due to the addition of phase
noise, which alters the angle of the complex modulated signal.

Display the Error Rate

The Display block displays the number of errors introduced by the channel noise. When
you run the simulation, three small boxes appear in the block, as shown in the following
figure, displaying the vector output from the Error Rate Calculation block.

Note The image below is a representative example and may not exactly match results
you see when running in Simulink.

2 System Simulation
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Error Rate Display

The block displays the output as follows:

• The first entry is the symbol error rate (SER).
• The second entry is the total number of errors.
• The third entry is the total number of comparisons made. The notation 1e+004 is

shorthand for 104.

Set Block Parameters

You can control the way a Simulink block functions by setting its parameters. To view or
change a block's parameters, double-click the block. This opens a dialog box, sometimes
called the block's mask. For example, the dialog box for the Phase Noise block is shown in
the following figure.

 256-QAM with Simulink Blocks
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Dialog for the Phase Noise Block
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To change the amount of phase noise, click in the Phase noise level (dBc/Hz) field and
enter a new value. Then click OK.

Alternatively, you can enter a variable name, such as phasenoise, in the field. You can
then set a value for that variable in the MATLAB Command Window, for example by
entering phasenoise = -60. Setting parameters in the Command Window is
convenient if you need to run multiple simulations with different parameter values.

You can also change the amount of noise in the AWGN Channel block. Double-click the
block to open its dialog box, and change the value in the Es/No parameter field. This
changes the signal to noise ratio, in dB. Decreasing the value of Es/No increases the
noise level.

You can experiment with the model by changing these or other parameters and then
running a simulation. For example,

• Change Phase noise level (dBc/Hz) to -150 in the dialog box for the Phase Noise
block.

• Change Es/No to 100 in the dialog for the AWGN Channel block.

This removes nearly all noise from the model. When you now run a simulation, the
scatter plot appears as in the figure “Constellation for 256-ary QAM” on page 2-5.

Display a Phase Noise Plot

Double-click the block labeled “Display Figure” at the bottom left of the model window.
This displays a plot showing the results of multiple simulations.

 256-QAM with Simulink Blocks
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BER Plot at Different Noise Levels

Each curve is a plot of bit error rate as a function of signal to noise ratio for a fixed
amount of phase noise.

You can create plots like this by running multiple simulations with different values for
the Phase noise level (dBc/Hz) and Es/No parameters.

2 System Simulation
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16-QAM with MATLAB Functions

In this section...
“Introduction” on page 2-11
“Modulate a Random Signal” on page 2-11
“Plot Signal Constellations” on page 2-17
“Pulse Shaping Using a Raised Cosine Filter” on page 2-20
“Error Correction using a Convolutional Code” on page 2-27

Introduction

This section builds an example step-by-step to give you a first look at the
Communications System Toolbox software. This section also shows how Communications
System Toolbox functionalities build upon the computational and visualization tools in
the underlying MATLAB environment.

Modulate a Random Signal

This example shows how to process a binary data stream using a communication system
that consists of a baseband modulator, channel, and demodulator. The system's bit error
rate (BER) is computed and the transmitted and received signals are displayed in a
constellation diagram.

The following table summarizes the basic operations used, along with relevant
Communications System Toolbox and MATLAB functions. The example uses baseband
16-QAM (quadrature amplitude modulation) as the modulation scheme and AWGN
(additive white Gaussian noise) as the channel model.
Task Function
Generate a Random Binary Data Stream randi
Convert the Binary Signal to an Integer-Valued
Signal

bi2de

Modulate using 16-QAM qammod
Add White Gaussian Noise awgn
Create a Constellation Diagram scatterplot

 16-QAM with MATLAB Functions
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Task Function
Demodulate using 16-QAM qamdemod
Convert the Integer-Valued Signal to a Binary Signal de2bi
Compute the System BER biterr

Generate a Random Binary Data Stream

The conventional format for representing a signal in MATLAB is a vector or matrix. This
example uses the randi function to create a column vector that contains the values of a
binary data stream. The length of the binary data stream (that is, the number of rows in
the column vector) is arbitrarily set to 30,000.

The code below also creates a stem plot of a portion of the data stream, showing the
binary values. Notice the use of the colon (:) operator in MATLAB to select a portion of
the vector.

Define parameters.

M = 16;                     % Size of signal constellation
k = log2(M);                % Number of bits per symbol
n = 30000;                  % Number of bits to process
numSamplesPerSymbol = 1;    % Oversampling factor

Create a binary data stream as a column vector.

rng default                 % Use default random number generator
dataIn = randi([0 1],n,1);  % Generate vector of binary data

Plot the first 40 bits in a stem plot.

stem(dataIn(1:40),'filled');
title('Random Bits');
xlabel('Bit Index');
ylabel('Binary Value');

2 System Simulation
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Convert the Binary Signal to an Integer-Valued Signal

The qammod function implements a rectangular, M-ary QAM modulator, M being 16 in
this example. The default configuration is such that the object receives integers between
0 and 15 rather than 4-tuples of bits. In this example, we preprocess the binary data
stream dataIn before using the qammod function. In particular, the bi2de function is
used to convert each 4-tuple to a corresponding integer.

Perform a bit-to-symbol mapping.
dataInMatrix = reshape(dataIn,length(dataIn)/k,k);   % Reshape data into binary k-tuples, k = log2(M)
dataSymbolsIn = bi2de(dataInMatrix);                 % Convert to integers

Plot the first 10 symbols in a stem plot.

 16-QAM with MATLAB Functions
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figure; % Create new figure window.
stem(dataSymbolsIn(1:10));
title('Random Symbols');
xlabel('Symbol Index');
ylabel('Integer Value');

Modulate using 16-QAM

Having generated the dataSymbolsIn column vector, use the qammod function to apply
16-QAM modulation for both binary and Gray coded bit-to-symbol mappings. Recall that
M is 16, the alphabet size.

Apply modulation.

2 System Simulation
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dataMod = qammod(dataSymbolsIn,M,'bin');         % Binary coding, phase offset = 0
dataModG = qammod(dataSymbolsIn,M); % Gray coding, phase offset = 0

The results are complex column vectors whose values are elements of the 16-QAM signal
constellation. A later step in this example will plot the constellation diagram.

To learn more about modulation functions, see “Digital Modulation”. Also, note that the
qammod function does not apply pulse shaping. To extend this example to use pulse
shaping, see “Pulse Shaping Using a Raised Cosine Filter” on page 2-20. For an example
that uses Gray coding with PSK modulation, see Gray Coded 8-PSK.

Add White Gaussian Noise

The ratio of bit energy to noise power spectral density, Eb/N0, is arbitrarily set to 10 dB.
From that value, the signal-to-noise ratio (SNR) can be determined. Given the SNR, the
modulated signal, dataMod, is passed through the channel by using the awgn function.

Note The numSamplesPerSymbol variable is not significant in this example but will
make it easier to extend the example later to use pulse shaping.

Calculate the SNR when the channel has an Eb/N0 = 10 dB.

EbNo = 10;
snr = EbNo + 10*log10(k) - 10*log10(numSamplesPerSymbol);

Pass the signal through the AWGN channel for both the binary and Gray coded symbol
mappings.

receivedSignal = awgn(dataMod,snr,'measured');
receivedSignalG = awgn(dataModG,snr,'measured');

Create a Constellation Diagram

The scatterplot function is used to display the in-phase and quadrature components
of the modulated signal, dataMod, and its received, noisy version, receivedSignal. By
looking at the resultant diagram, the effects of AWGN are readily observable.

Use the scatterplot function to show the constellation diagram.

sPlotFig = scatterplot(receivedSignal,1,0,'g.');
hold on
scatterplot(dataMod,1,0,'k*',sPlotFig)

 16-QAM with MATLAB Functions
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Demodulate 16-QAM

The qamdemod function is used to demodulate the received data and output integer-
valued data symbols.

Demodulate the received signals using the qamdemod function.

dataSymbolsOut = qamdemod(receivedSignal,M,'bin');
dataSymbolsOutG = qamdemod(receivedSignalG,M);

Convert the Integer-Valued Signal to a Binary Signal

The de2bi function is used to convert the data symbols from the QAM demodulator,
dataSymbolsOut, into a binary matrix, dataOutMatrix with dimensions of Nsym-by-

2 System Simulation
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Nbits/sym, where Nsym is the total number of QAM symbols and Nbits/sym is the number of
bits per symbol, four in this case. The matrix is then converted into a column vector
whose length is equal to the number of input bits, 30,000. The process is repeated for the
Gray coded data symbols, dataSymbolsOutG.

Reverse the bit-to-symbol mapping performed earlier.

dataOutMatrix = de2bi(dataSymbolsOut,k);
dataOut = dataOutMatrix(:);                   % Return data in column vector
dataOutMatrixG = de2bi(dataSymbolsOutG,k);
dataOutG = dataOutMatrixG(:);                 % Return data in column vector

Compute the System BER

The function biterr is used to calculate the bit error statistics from the original binary
data stream, dataIn, and the received data streams, dataOut and dataOutG.

Use the error rate function to compute the error statistics and use fprintf to display
the results.

[numErrors,ber] = biterr(dataIn,dataOut);
fprintf('\nThe binary coding bit error rate = %5.2e, based on %d errors\n', ...
    ber,numErrors)

The binary coding bit error rate = 2.40e-03, based on 72 errors

[numErrorsG,berG] = biterr(dataIn,dataOutG);
fprintf('\nThe Gray coding bit error rate = %5.2e, based on %d errors\n', ...
    berG,numErrorsG)

The Gray coding bit error rate = 1.33e-03, based on 40 errors

Observe that Gray coding significantly reduces the bit error rate.

Plot Signal Constellations

The example in the previous section, “Modulate a Random Signal” on page 2-11, created
a scatter plot from the modulated signal. Although the plot showed the points in the
QAM constellation, the plot did not indicate which integers of the modulator are mapped
to a given constellation point. This section illustrates two possible mappings: 1) binary
coding, and 2) Gray coding. It was previously demonstrated that Gray coding provides
superior bit error rate performance.
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Binary Symbol Mapping for 16-QAM Constellation

Apply 16-QAM modulation to all possible input values using the default symbol mapping,
binary.

M = 16;                         % Modulation order
x = (0:15)';                    % Integer input
y1 = qammod(x,16,'bin');        % 16-QAM output

Use the scatterplot function to plot the constellation diagram and annotate it with
binary representations of the constellation points.

scatterplot(y1)
text(real(y1)+0.1, imag(y1), dec2bin(x))
title('16-QAM, Binary Symbol Mapping')
axis([-4 4 -4 4])
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Gray-coded Symbol Mapping for 16-QAM Constellation

Apply 16-QAM modulation to all possible input values using Gray-coded symbol
mapping.

y2 = qammod(x,16,'gray');  % 16-QAM output, Gray-coded

Use the scatterplot function to plot the constellation diagram and annotate it with
binary representations of the constellation points.

scatterplot(y2)
text(real(y2)+0.1, imag(y2), dec2bin(x))
title('16-QAM, Gray-coded Symbol Mapping')
axis([-4 4 -4 4])
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Examine the Plots

In the binary mapping plot, notice that symbols 1 (0 0 0 1) and 2 (0 0 1 0) correspond
to adjacent constellation points on the left side of the diagram. The binary
representations of these integers differ by two bits unlike the Gray-coded signal
constellation in which each point differs by only one bit from its direct neighbors, which
leads to better BER performance.

Pulse Shaping Using a Raised Cosine Filter

The “Modulate a Random Signal” on page 2-11 example was modified to employ a pair of
square-root raised cosine (RRC) filters to perform pulse shaping and matched filtering.
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The filters are created by the rcosdesign function. In “Error Correction using a
Convolutional Code” on page 2-27, this example is extended by introducing forward
error correction (FEC) to improve BER performance.

To create a BER simulation, a modulator, demodulator, communication channel, and
error counter functions must be used and certain key parameters must be specified. In
this case, 16-QAM modulation is used in an AWGN channel.

Establish Simulation Framework

Set the simulation parameters.

M = 16;                     % Size of signal constellation
k = log2(M);                % Number of bits per symbol
numBits = 3e5;              % Number of bits to process
numSamplesPerSymbol = 4;    % Oversampling factor

Create Raised Cosine Filter

Set the square-root, raised cosine filter parameters.

span = 10;        % Filter span in symbols
rolloff = 0.25;   % Roloff factor of filter

Create a square-root, raised cosine filter using the rcosdesign function.

rrcFilter = rcosdesign(rolloff, span, numSamplesPerSymbol);

Display the RRC filter impulse response using the fvtool function.

fvtool(rrcFilter,'Analysis','Impulse')
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BER Simulation

Use the randi function to generate random binary data. The rng function should be set
to its default state so that the example produces repeatable results.
rng default                         % Use default random number generator
dataIn = randi([0 1], numBits, 1);  % Generate vector of binary data

Reshape the input vector into a matrix of 4-bit binary data, which is then converted into
integer symbols.
dataInMatrix = reshape(dataIn, length(dataIn)/k, k); % Reshape data into binary 4-tuples
dataSymbolsIn = bi2de(dataInMatrix);                 % Convert to integers

Apply 16-QAM modulation using qammod.
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dataMod = qammod(dataSymbolsIn, M);

Using the upfirdn function, upsample and apply the square-root, raised cosine filter.

txSignal = upfirdn(dataMod, rrcFilter, numSamplesPerSymbol, 1);

The upfirdn function upsamples the modulated signal, dataMod, by a factor of
numSamplesPerSymbol, pads the upsampled signal with zeros at the end to flush the
filter and then applies the filter.

Set the Eb/N0 to 10 dB and convert the SNR given the number of bits per symbol, k, and
the number of samples per symbol.

EbNo = 10;
snr = EbNo + 10*log10(k) - 10*log10(numSamplesPerSymbol);

Pass the filtered signal through an AWGN channel.

rxSignal = awgn(txSignal, snr, 'measured');

Filter the received signal using the square-root, raised cosine filter and remove a portion
of the signal to account for the filter delay in order to make a meaningful BER
comparison.

rxFiltSignal = upfirdn(rxSignal,rrcFilter,1,numSamplesPerSymbol);   % Downsample and filter
rxFiltSignal = rxFiltSignal(span+1:end-span);                       % Account for delay

These functions apply the same square-root raised cosine filter that the transmitter used
earlier, and then downsample the result by a factor of nSamplesPerSymbol. The last
command removes the first Span symbols and the last Span symbols in the decimated
signal because they represent the cumulative delay of the two filtering operations. Now
rxFiltSignal, which is the input to the demodulator, and dataSymbolsOut, which is
the output from the modulator, have the same vector size. In the part of the example that
computes the bit error rate, it is required to compare vectors that have the same size.

Apply 16-QAM demodulation to the received, filtered signal.

dataSymbolsOut = qamdemod(rxFiltSignal, M);

Using the de2bi function, convert the incoming integer symbols into binary data.

dataOutMatrix = de2bi(dataSymbolsOut,k);
dataOut = dataOutMatrix(:);                 % Return data in column vector
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Apply the biterr function to determine the number of errors and the associated BER.

[numErrors, ber] = biterr(dataIn, dataOut);
fprintf('\nThe bit error rate = %5.2e, based on %d errors\n', ...
    ber, numErrors)

The bit error rate = 1.83e-03, based on 550 errors

Visualization of Filter Effects

Create an eye diagram for a portion of the filtered signal.

eyediagram(txSignal(1:2000),numSamplesPerSymbol*2);
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The eyediagram function creates an eye diagram for part of the filtered noiseless signal.
This diagram illustrates the effect of the pulse shaping. Note that the signal shows
significant intersymbol interference (ISI) because the filter is a square-root raised cosine
filter, not a full raised cosine filter.
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Created a scatter plot of the received signal before and after filtering.

h = scatterplot(sqrt(numSamplesPerSymbol)*...
    rxSignal(1:numSamplesPerSymbol*5e3),...
    numSamplesPerSymbol,0,'g.');
hold on;
scatterplot(rxFiltSignal(1:5e3),1,0,'kx',h);
title('Received Signal, Before and After Filtering');
legend('Before Filtering','After Filtering');
axis([-5 5 -5 5]); % Set axis ranges
hold off;
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Notice that the first scatterplot command scales rxSignal by
sqrt(numSamplesPerSymbol) when plotting. This is because the filtering operation
changes the signal's power.

Error Correction using a Convolutional Code

Building upon the “Pulse Shaping Using a Raised Cosine Filter” on page 2-20 example,
this example shows how bit error rate performance improves with the addition of forward
error correction, FEC, coding.

Establish Simulation Framework

To create the simulation, a modulator, demodulator, raised cosine filter pair,
communication channel, and error counter functions are used and certain key
parameters are specified. In this case, a 16-QAM modulation scheme with raised cosine
filtering is used in an AWGN channel. With the exception of the number of bits, the
specified parameters are identical to those used in the previous example.

Set the simulation variables. The number of bits is increased from the previous example
so that the bit error rate may be estimated more accurately.

M = 16;                                         % Size of signal constellation
k = log2(M);                                    % Number of bits per symbol
numBits = 100000;                               % Number of bits to process
numSamplesPerSymbol = 4;                        % Oversampling factor

Generate Random Data

Use the randi function to generate random, binary data once the rng function has been
called. When set to its default value, the rng function ensures that the results from this
example are repeatable.

rng default                                     % Use default random number generator
dataIn = randi([0 1], numBits, 1);              % Generate vector of binary data

Convolutional Encoding

The performance of the “Pulse Shaping Using a Raised Cosine Filter” on page 2-20
example can be significantly improved upon by employing forward error correction. In
this example, convolutional coding is applied to the transmitted bit stream in order to
correct errors arising from the noisy channel. Because it is often implemented in real
systems, the Viterbi algorithm is used to decode the received data. A hard decision
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algorithm is used, which means that the decoder interprets each input as either a “0” or a
“1”.

Define a convolutional coding trellis for a rate 2/3 code. The poly2trellis function
defines the trellis that represents the convolutional code that convenc uses for encoding
the binary vector, dataIn. The two input arguments of the poly2trellis function
indicate the code’s constraint length and generator polynomials, respectively.

tPoly = poly2trellis([5 4],[23 35 0; 0 5 13]);
codeRate = 2/3;

Encode the input data using the previously created trellis.

dataEnc = convenc(dataIn, tPoly);

Modulate Data

The encoded binary data is converted into an integer format so that 16-QAM modulation
can be applied.

Reshape the input vector into a matrix of 4-bit binary data, which is then converted into
integer symbols.

dataEncMatrix = reshape(dataEnc, ...
    length(dataEnc)/k, k);                      % Reshape data into binary 4-tuples
dataSymbolsIn = bi2de(dataEncMatrix);           % Convert to integers

Apply 16-QAM modulation.

dataMod = qammod(dataSymbolsIn, M);

Raised Cosine Filtering

As in the “Pulse Shaping Using a Raised Cosine Filter” on page 2-20 example, RRC
filtering is applied to the modulated signal before transmission. The example makes use
of the rcosdesign function to create the filter and the upfirdn function to filter the
data.

Specify the filter span and rolloff factor for the square-root, raised cosine filter.

span = 10;        % Filter span in symbols
rolloff = 0.25;   % Roloff factor of filter

Create the filter using the rcosdesign function.
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rrcFilter = rcosdesign(rolloff, span, numSamplesPerSymbol);

Using the upfirdn function, upsample and apply the square-root, raised cosine filter.

txSignal = upfirdn(dataMod, rrcFilter, numSamplesPerSymbol, 1);

AWGN Channel

Calculate the signal-to-noise ratio, SNR, based on the input Eb/N0, the number of
samples per symbol, and the code rate. Converting from Eb/N0 to SNR requires one to
account for the number of information bits per symbol. In the previous example, each
symbol corresponded to k bits. Now, each symbol corresponds to k*codeRate information
bits. More concretely, three symbols correspond to 12 coded bits in 16-QAM, which
correspond to 8 uncoded (information) bits.

EbNo = 10;
snr = EbNo + 10*log10(k*codeRate)-10*log10(numSamplesPerSymbol);

Pass the filtered signal through an AWGN channel.

rxSignal = awgn(txSignal, snr, 'measured');

Receive and Demodulate Signal

Filter the received signal using the RRC filter and remove a portion of the signal to
account for the filter delay in order to make a meaningful BER comparison.

rxFiltSignal = upfirdn(rxSignal,rrcFilter,1,numSamplesPerSymbol);   % Downsample and filter
rxFiltSignal = rxFiltSignal(span+1:end-span);                       % Account for delay

Demodulate the received, filtered signal using the qamdemod function.

dataSymbolsOut = qamdemod(rxFiltSignal, M);

Viterbi Decoding

Use the de2bi function to convert the incoming integer symbols into bits.

dataOutMatrix = de2bi(dataSymbolsOut,k);
codedDataOut = dataOutMatrix(:);                 % Return data in column vector

Decode the convolutionally encoded data with a Viterbi decoder. The syntax for the
vitdec function instructs it to use hard decisions. The 'cont' argument instructs it to use
a mode designed for maintaining continuity when the function is repeatedly invoked (as
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in a loop). Although this example does not use a loop, the 'cont' mode is used for the
purpose of illustrating how to compensate for the delay in this decoding operation.

traceBack = 16;                                             % Traceback length for decoding
numCodeWords = floor(length(codedDataOut)*2/3);             % Number of complete codewords
dataOut = vitdec(codedDataOut(1:numCodeWords*3/2), ...      % Decode data
           tPoly,traceBack,'cont','hard');

BER Calculation

Using the biterr function, compare dataIn and dataOut to obtain the number of
errors and the bit error rate while taking the decoding delay into account. The
continuous operation mode of the Viterbi decoder incurs a delay whose duration in bits
equals the traceback length, traceBack, times the number of input streams at the
encoder. For this rate 2/3 code, the encoder has two input streams, so the delay is
2×traceBack bits. As a result, the first 2×traceBack bits in the decoded vector,
dataOut, are zeros. When computing the bit error rate, the first 2×traceBack bits in
dataOut and the last 2×traceBack bits in the original vector, dataIn, are discarded.
Without delay compensation, the BER computation is meaningless.

decDelay = 2*traceBack;                                     % Decoder delay, in bits
[numErrors, ber] = ...
   biterr(dataIn(1:end-decDelay),dataOut(decDelay+1:end));       

fprintf('\nThe bit error rate = %5.2e, based on %d errors\n', ...
    ber, numErrors)

The bit error rate = 6.00e-05, based on 6 errors

It can be seen that for the same Eb/N0 of 10 dB, the number of errors when using FEC is
reduced as the BER is improves from 2.0×10-3 to 6.9×10-4.

More About Delays

The decoding operation in this example incurs a delay, which means that the output of
the decoder lags the input. Timing information does not appear explicitly in the example,
and the duration of the delay depends on the specific operations being performed. Delays
occur in various communications-related operations, including convolutional decoding,
convolutional interleaving/deinterleaving, equalization, and filtering. To find out the
duration of the delay caused by specific functions or operations, refer to the specific
documentation for those functions or operations. For example:
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• The vitdec reference page
• “Delays of Convolutional Interleavers”
• “Fading Channels”
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Iterative Design Workflow for Communication Systems

In this section...
“Simulate a basic communications system” on page 2-33
“Introduce convolutional coding and hard-decision Viterbi decoding” on page 2-37
“Improve results using soft-decision decoding” on page 2-41
“Use turbo coding to improve BER performance” on page 2-46
“Apply a Rayleigh channel model” on page 2-49
“Use OFDM-based equalization to correct multipath fading” on page 2-53
“Use multiple antennas to further improve system performance” on page 2-56
“Accelerate the simulation using MATLAB Coder” on page 2-59

This example illustrates a design workflow that represents the iterative steps for
creating a wireless communications system with the Communications System Toolbox.
Because Communications System Toolbox supports both MATLAB and Simulink, this
example showcases design paths using MATLAB code and Simulink blocks. As you
progress through the workflow, you may follow the design path for MATLAB, for
Simulink, or for both products.

The workflow begins with a simple communications system and performs bit error rate
(BER) simulations to gauge system performance. BER simulations are based on
simulating a communications system with a given signal-to-noise ratio (En/No), and then
calculating the corresponding bit error rate measurement to determine the number of
errors in the transmitted signal. The lower the BER measurement at a given signal-to-
noise ratio, the better the system performance.

This workflow starts with a simple communications system, and iteratively adds the
algorithmic components necessary to build a more complicated system. These additional
components include:

• Convolutional Encoding and Viterbi Decoding
• Turbo Coding
• Multipath Fading Channels
• OFDM-Based Transmission
• Multiple-Antenna Techniques
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As you add components to the system, the workflow includes bit error calculations so
that you can progressively examine system performance. For some components,
theoretical or performance benchmarks are available. In these cases, the workflow shows
both the theoretical and measured performance metric.

Simulate a basic communications system

This workflow starts with a simple QPSK modulator system that transmits a signal
through an AWGN channel and calculates the bit error rate to evaluate system
performance.

In MATLAB

1 CD to the following MATLAB folder:

matlab\help\toolbox\comm\examples
2 Type edit doc_design_iteration_basic_m at the MATLAB command line.

MATLAB opens a file you will use in this example. Notice that this code employs
four System objects from Communications System Toolbox: comm.PSKModulator,
comm.AWGN, comm.PSKDemodulator, and comm.ErrorRate. For each EbNo value,
the code runs in a while loop until either the specified number of errors are observed
or the maximum number of bits are processed. Notice that the code executes each
System object by calling the step method. The code outputs BER, defined as the
ratio of the observed number of errors per number of bits processed. The subsequent
MATLAB functions that this example uses have a similar structure.

3 Type bertool at the MATLAB command line to open the Bit Error Rate Analysis
Tool.

4 When the BERTool application appears, click the Theoretical tab.

The first plot that you will generate is a theoretical curve.
5 Enter 0:9 for the EbNo range.

EbNo is the ratio of noise power energy per bit. The higher the value, the better the
system performance. This simulation will run using different values for the ratio,
between 0 and 9.

6 Select 4 for Modulation order.

The modulation order defines the number of symbols to transmit. Here, each symbol
is made up of two bits.
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7 Click Plot.

The BERTool application generates the theoretical BER curve.
8 Cick the Monte Carlo tab.

Monte Carlo techniques use random sampling to compute data. Therefore, the plot
for the second simulation uses random sampling.

9 Enter 0:9 for the EbNo range.
10 Enter ber for the BER variable name.
11 Enter 200 for the Number of errors.

The Number of errors is one of the stop criteria for the simulation.
12 Enter 1e7 for the Number of bits.

The Number of bits is also a stop criteria for the simulation. The simulation stops
when it transmits the number of bits you specify for this parameter. In this example,
the simulation either stops when it transmits 10 million bits or when it detects 200
errors.

13 Click the Browse button.
14 Navigate to matlab/help/toolbox/comm/examples, and select

doc_design_iteration_basic_m.m.
15 Click Run.

BERTool runs the simulation and generates simulation points along the BER curve.
Compare the simulation BER curve with the theoretical BER curve.
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Every function with two output variables and three input variables can be called
using BERTool. This is how you interpret the three input variables:

• The first variable is a scalar number that corresponds to EbNo.
• The second variable is the stopping criterion based on the maximum number of

errors to observe before stopping the simulation.
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• The third variable is the stop criterion based on the maximum number of bits to
process before observe before stopping the simulation.

In Simulink

1 Type bertool at the MATLAB command line to open the Bit Error Rate Analysis
Tool.

2 When the BERTool application appears, click the Theoretical tab.
3 Enter 0:9 for the EbNo range.

EbNo is the ratio of noise power energy per bit. The higher the value, the better the
system performance. This simulation will run using different values for the ratio,
between 0 and 9.

4 Select 4 for Modulation order.

The modulation order defines the number of symbols to transmit. Here, each symbol
is made up of two bits.

5 Click Plot.

The BERTool application generates the theoretical BER curve.
6 Click the Monte Carlo tab.
7 Enter 0:9 or the EbNo range.
8 Enter ber for the BER variable name.
9 Enter 200 for the Number of errors.

The Number of errors is one of the stop criteria for the simulation. The simulation
stops when it reaches either the Number of errors or the Number of bits.

10 Enter 1e7 for the Number of bits.

The Number of bits is also a stop criteria for the simulation. The simulation stops
when it transmits the number of bits you specify for this parameter or when it
reaches the Number of errors. In this example, the simulation either stops when it
transmits 10 million bits or when it detects 200 errors.

11 Click the Browse button, select All Files for the Files of type field.
12 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_basic.slx and click Run.

BERTool runs the simulation and generates simulated points along the BER curve.
Compare the simulation BER curve with the theoretical BER curve.
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Introduce convolutional coding and hard-decision Viterbi decoding

Modify the basic communications model to include forward error correction. Adding
forward error correction to the basic communications model improves system
performance. In forward error correction, the transmitter sends redundant bits, along
with the message bits, through a wireless channel. When the receiver accepts the
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transmitted signal, it uses the redundancy bits to detect and correct errors that the
channel may have introduced.

This section of the design workflow adds a convolutional encoder and a Viterbi decoder to
the communication system. This communications system uses hard-decision Viterbi
decoding. In hard-decision Viterbi decoding, the demodulator maps the received signal to
bits, and then passes the bits to the Viterbi decoder for error correction.

In MATLAB

In this iteration of the design workflow, the MATLAB file you use starts from where the
one in the previous section ended. This file adds two additional System objects to the
communications system, comm.ConvolutionalEncoder and comm.ViterbiDecoder.
The overall structure of the code doesn't change; it simply contains additional
functionality.

1 Access the BERTool application.
2 Clear the Plot check boxes for the two plots BERTool generated in the previous step.
3 Click Theoretical.
4 Enter 0:7 for the EbNo range.
5 Select Convolutional for the Channel Coding.
6 Select Hard for the Decision method.

This example uses hard-decision Viterbi decoding. The demodulator maps the
received signal to bits, and then passes the bits to the Viterbi decoder for error
correction.

7 Click Plot.

The BERTool application generates the theoretical BER curve.
8 Click Monte Carlo.
9 Enter 0:7 for the EbNo range.
10 Enter 200 for the Number of errors.
11 Enter 1e7 for the Number of bits.
12 Click the Browse button.
13 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_m.m and click Open.
14 Click Run.

BERTool runs the simulation and generates simulated points along the BER curve.
Compare the simulation BER curve with the theoretical BER curve.
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In Simulink

1 Access the BERTool application.
2 Click the Theoretical tab.
3 Enter 0:7 for the EbNo range.
4 Select Convolutional for the Channel Coding.
5 Select Hard for the Decision method.
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This example uses hard-decision Viterbi decoding. The demodulator maps the
received signal to bits, and then passes the bits to the Viterbi decoder for error
correction.

6 Click Plot.

The BERTool application generates the theoretical BER curve.
7 Click the Monte Carlo tab.
8 Enter 0:7 for the EbNo range.
9 Enter 200 for the Number of errors.
10 Enter 1e7 for the Number of bits.
11 Click the Browse button, select All Files for the Files of type field.
12 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi.slx and click Open.
13 click Run.BERTool runs the simulation and generates simulated points along the

BER curve. Compare the simulation BER curve with the theoretical BER curve.
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Improve results using soft-decision decoding

Use soft-decision decoding to improve BER performance. The previous section of this
workflow uses hard-decision demodulation and hard-decision Viterbi decoding –
processes that map symbols to bits. This section of the workflow uses soft-decision
demodulation and soft-decision Viterbi decoding. In soft-decision demodulation, the
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received symbols are not mapped to bits. Instead, the symbols are mapped to log-
likelihood ratios. When the Viterbi decoder processes log-likelihood ratios (LLR), the
BER performance of the system improves.

In MATLAB

1 Access the BERTool application.
2 Clear the Plot check boxes for the two plots BERTool generated in the previous step.
3 Click Theoretical.
4 Enter 0:5 for the EbNo range.
5 Select Soft for the Decision method.

This example uses soft-decision Viterbi decoding. The demodulator maps the
received signal to log likelihood ratios, improving BER performance results.

6 Click Plot.

The BERTool application generates the theoretical BER curve.
7 Click Monte Carlo.
8 Enter 0:5 for the EbNo range.
9 Enter 200 for the Number of errors.
10 Enter 1e7 for the Number of bits.
11 Click the Browse button.
12 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_soft_m.m and click Run.

BERTool runs the simulation and generates the actual simulated points along the
BER curve. Compare the simulation BER curve with the theoretical BER curve.
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In Simulink

1 Access the BERTool application.
2 Clear the Plot check boxes for the two plots BERTool generated in the previous step.
3 Click Theoretical.
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4 Enter 0:5for the EbNo range.
5 Select Soft for the Decision method.

This example uses soft-decision Viterbi decoding. The demodulator maps the
received signal to log likelihood ratios, improving BER performance results.

6 Click Plot.

The BERTool application generates the theoretical BER curve.
7 Click Monte Carlo.
8 Enter 0:5 for the EbNo range.
9 Enter 200 for the Number of errors.
10 Enter 1e7 for the Number of bits.
11 Click the Browse button, select All Files for the Files of type field.
12 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_soft.slx and click Run.
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When you plot the soft-decision theoretical curve, you will observe BER curve
improvements of about 2 dB relative to the hard-decision decoding. Notice that the
simulation results also reflects a similar BER improvement.
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Use turbo coding to improve BER performance

Turbo codes substantially improve BER performance over soft-decision Viterbi decoding.
Turbo coding uses two convolutional encoders in parallel at the transmitter and two a
posteriori probability (APP) decoders in series at the receiver. This example uses a rate
1/3 turbo coder. For each input bit, the output has 1 systematic bit and 2 parity bits, for a
total of three bits. Turbo coders achieve BER performances at much lower SNR values
than convolutional encoders. As a result, this iteration uses a lower range of EbNo values
than the previous section.

In MATLAB

1 Access the BERTool application.
2 Click the Monte Carlo tab.
3 Enter 0:0.2:1.2 for the EbNo range.
4 Enter 200 for the Number of errors.
5 Enter 1e7 for the Number of bits.
6 Click the Browse button.
7 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_zTurbo_soft_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER curve.
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In Simulink

1 Access the BERTool application.
2 Clear the Plot check boxes for the last plot BERTool generated in the previous

section.
3 Click the Monte Carlo tab.
4 Enter 0:0.2:1.2 for the EbNo range.
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5 Enter 200 for the Number of errors.
6 Enter 1e7 for the Number of bits.
7 Click the Browse button, select All Files for the Files of type field.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_turbo.slx and click Run.

BERTool runs the simulation and generates simulated points along the BER curve.
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Apply a Rayleigh channel model

The previous design iterations model narrowband communications systems that can be
adequately represented using an AWGN channel. However, high data rate
communications systems require a wideband channel. Wideband communications
channels are highly susceptible to the effects of multipath propagation, which introduces
intersymbol interference (ISI). Therefore, you must model wideband channels as
multipath fading channels. This iteration of the design workflow uses a multipath fading
Rayleigh channel, which assumes no direct line-of-sight between the transmitter and
receiver.

In MATLAB

1 Access the BERTool application.
2 Clear the Plot check box for the plot BERTool generated in the previous step.
3 Click Monte Carlo.
4 Enter 0:9 for the EbNo range.
5 Enter 200 for the Number of errors.
6 Enter 1e7 for the Number of bits.
7 Click the Browse button.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_rayleigh_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER curve.
Compare the simulation BER curve with the theoretical BER curve.
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In the presence of multipath fading, the BER performance reduces to that of a binary
channel with a consistent value of one-half. To correct the effect of multipath fading,
you must add equalization to the communications system.

In Simulink

1 Access the BERTool application.
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2 Clear the Plot check box to clear the plot BERTool generated in the previous step.
3 Click Monte Carlo.
4 Enter 0:7 for the EbNo range.
5 Enter 200 for the Number of errors.
6 Enter 1e7 for the Number of bits.
7 Click the Browse button, select All Files for the Files of type field.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_rayleigh.slx and click Run.

BERTool runs the simulation and generates simulated points along the BER curve.
Compare the simulation BER curve with the theoretical BER curve.
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In the presence of multipath fading, the BER performance reduces to that of a binary
channel with a consistent value of one-half. To correct the effect of multipath fading,
you must add equalization to the communications system.
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Use OFDM-based equalization to correct multipath fading

Use orthogonal frequency-division multiplexing (OFDM) to compensate for the multipath
fading effect introduced by the Rayleigh fading channel. OFDM transmission schemes
provides an effective way to perform frequency domain equalization. This design
iteration introduces an OFDM transmitter, an OFDM receiver, and a frequency domain
equalizer to the communications system.

In MATLAB

1 Access the BERTool application.
2 Clear the Plot check boxes for the simulation plot generated in the previous step.
3 Click the Monte Carlo tab.
4 Enter 0:9 for the EbNo range.
5 Enter 6000 for the Number of errors.
6 Enter 1e7 for the Number of bits.
7 Click the Browse button.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_Rayleigh_OFDM_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER curve.
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In Simulink

1 Access the BERTool application.
2 Clear the Plot check boxes for the plots BERTool generated in the previous step.
3 Click the Monte Carlo tab.
4 Enter 0:9 for the EbNo range.
5 Enter 6000 for the Number of errors.
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6 Enter 5e7 for the Number of bits.
7 Click the Browse button, select All Files for the Files of type field.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_rayleigh_OFDM.slx and click Run.

BERTool runs the simulation and generates simulated points. Compare the
simulation BER curve with the theoretical BER curve.
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Use multiple antennas to further improve system performance

Simultaneously transmitting copies of a signal using multiple antennas can significantly
increase the likelihood that the receiver correctly recovers the transmitted signal. This
phenomenon is known as transmit diversity. However, this performance improvement
comes at the expense of introducing additional computational complexity in the receiver.

In MATLAB

1 Access the BERTool application.
2 Clear the Plot check box to clear the simulation plot generated in the previous step.
3 Click the Monte Carlo tab.
4 Enter 0:9 for the EbNo range.
5 Enter 1000 for the Number of errors.
6 Enter 1e7 for the Number of bits.
7 Click the Browse button.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER curve.
Compare the simulation BER curve with the theoretical BER curve.
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In Simulink

1 Access the BERTool application.
2 Click the Monte Carlo tab.
3 Enter 0:9 for the EbNo range.
4 Enter 700 for the Number of errors.
5 Enter 1e7 for the Number of bits.
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6 Click the Browse button, select All Files for the Files of type field.
7 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_rayleigh_OFDM_MIMO.slx and click Run.
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Accelerate the simulation using MATLAB Coder

All of the functions and System objects that this design iteration workflow uses support
C code generation. If you have a MATLAB Coder™ license, you can accelerate simulation
speed by generating a .mex file using the codegen command.

In MATLAB

1 Copy the doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m.m file to a folder
that is not on the MATLAB path. For example, C:\Temp.

2 Change your working directory to the folder you just created.
3 Execute the following commands to set a numerical value for each of the input

arguments in the doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m function.
For example:

EbNo=1;
MaxNumErrs=200;
MaxNumBits=1e7;

4 Execute the codegen command to generate the executable MATLAB file.

codegen -args {EbNo,MaxNumErrs,MaxNumBits}
doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m

5 The file extension of the MATLAB executable file that gets generated depends upon
your operating system. For example, on 64–bit Windows® the file extension will
be .mexw64, and the full file name will be
doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m_mex.mexw64.

If you run the mex file you just generated in BERTool, you will obtain the simulation
results more quickly.

6 Access the BERTool application.
7 Click the Monte Carlo tab.
8 Enter 0:9 for the EbNo range.
9 Enter 700 for the Number of errors.
10 Enter 1e7 for the Number of bits.
11 Click the Browse button, and select All Files.

Navigate to folder you created in step 1 and click Run.

BERTool runs the simulation and generates simulated points along the BER curve.
Compare the simulation BER curve with the previous curve. Any variation in the
BER curve of the mex file and the MATLAB file from which it was generated is
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related to the seed of the random number generator and is statistically insignificant.
In this example, BERTool generates the curve much more quickly when you use
MATLAB Coder to generate C code. Notice that BERTool generates similar BER
results in about 1/4 of the time that it took for the original simulation took to
complete.
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QPSK and OFDM with MATLAB System Objects
This example shows how to simulate a basic communication system in which the signal
is first QPSK modulated and then subjected to Orthogonal Frequency Division
Multiplexing. The signal is then passed through an additive white Gaussian noise
channel prior to being demultiplexed and demodulated. Lastly, the number of bit errors
are calculated. The example showcases the use of MATLAB® System objects™.

Set the simulation parameters.
M = 4;                 % Modulation alphabet
k = log2(M);           % Bits/symbol
numSC = 128;           % Number of OFDM subcarriers
cpLen = 32;            % OFDM cyclic prefix length
maxBitErrors = 100;    % Maximum number of bit errors
maxNumBits = 1e7;      % Maximum number of bits transmitted

Construct System objects needed for the simulation: QPSK modulator, QPSK
demodulator, OFDM modulator, OFDM demodulator, AWGN channel, and an error rate
calculator. Use name-value pairs to set the object properties.

Set the QPSK modulator and demodulator so that they accept binary inputs.
qpskMod = comm.QPSKModulator('BitInput',true);
qpskDemod = comm.QPSKDemodulator('BitOutput',true);

Set the OFDM modulator and demodulator pair according to the simulation parameters.
ofdmMod = comm.OFDMModulator('FFTLength',numSC,'CyclicPrefixLength',cpLen);
ofdmDemod = comm.OFDMDemodulator('FFTLength',numSC,'CyclicPrefixLength',cpLen);

Set the NoiseMethod property of the AWGN channel object to Variance and define the
VarianceSource property so that the noise power can be set from an input port.

channel = comm.AWGNChannel('NoiseMethod','Variance', ...
    'VarianceSource','Input port');

Set the ResetInputPort property to true to enable the error rate calculator to be reset
during the simulation.
errorRate = comm.ErrorRate('ResetInputPort',true);

Use the info function of the ofdmMod object to determine the input and output
dimensions of the OFDM modulator.
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ofdmDims = info(ofdmMod)

ofdmDims = 

  struct with fields:

    DataInputSize: [117 1]
       OutputSize: [160 1]

Determine the number of data subcarriers from the ofdmDims structure variable.

numDC = ofdmDims.DataInputSize(1)

numDC =

   117

Determine the OFDM frame size (in bits) from the number of data subcarriers and the
number of bits per symbol.

frameSize = [k*numDC 1];

Set the SNR vector based on the desired Eb/No range, the number of bits per symbol, and
the ratio of the number of data subcarriers to the total number of subcarriers.

EbNoVec = (0:10)';
snrVec = EbNoVec + 10*log10(k) + 10*log10(numDC/numSC);

Initialize the BER and error statistics arrays.

berVec = zeros(length(EbNoVec),3);
errorStats = zeros(1,3);

Simulate the communication link over the range of Eb/No values. For each Eb/No value,
the simulation runs until either maxBitErrors are recorded or the total number of
transmitted bits exceeds maxNumBits.

for m = 1:length(EbNoVec)
    snr = snrVec(m);

    while errorStats(2) <= maxBitErrors && errorStats(3) <= maxNumBits
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        dataIn = randi([0,1],frameSize);              % Generate binary data
        qpskTx = qpskMod(dataIn);                     % Apply QPSK modulation
        txSig = ofdmMod(qpskTx);                      % Apply OFDM modulation
        powerDB = 10*log10(var(txSig));               % Calculate Tx signal power
        noiseVar = 10.^(0.1*(powerDB-snr));           % Calculate the noise variance
        rxSig = channel(txSig,noiseVar);              % Pass the signal through a noisy channel
        qpskRx = ofdmDemod(rxSig);                    % Apply OFDM demodulation
        dataOut = qpskDemod(qpskRx);                  % Apply QPSK demodulation
        errorStats = errorRate(dataIn,dataOut,0);     % Collect error statistics
    end

    berVec(m,:) = errorStats;                         % Save BER data
    errorStats = errorRate(dataIn,dataOut,1);         % Reset the error rate calculator
end

Use the berawgn function to determine the theoretical BER for a QPSK system.

berTheory = berawgn(EbNoVec,'psk',M,'nondiff');

Plot the theoretical and simulated data on the same graph to compare results.

figure
semilogy(EbNoVec,berVec(:,1),'*')
hold on
semilogy(EbNoVec,berTheory)
legend('Simulation','Theory','Location','Best')
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')
grid on
hold off
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Observe that there is good agreement between the simulated and theoretical data.
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Accelerating BER Simulations Using the Parallel Computing
Toolbox

This example shows how to use the Parallel Computing Toolbox to accelerate a simple,
QPSK bit error rate (BER) simulation. The system consists of a QPSK modulator, a
QPSK demodulator, an AWGN channel, and a bit error rate counter. In this example,
four parallel processors are used.

Set the simulation parameters.

EbNoVec = 5:8;      % Eb/No values in dB
totalErrors = 200;  % Number of bit errors needed for each Eb/No value
totalBits = 1e7;    % Total number of bits transmitted for each Eb/No value

Allocate memory to the arrays used to store the data generated by the function,
helper_qpsk_sim_with_awgn.

[numErrors, numBits] = deal(zeros(length(EbNoVec),1));

Run the simulation and determine the execution time. Only one processor will be used to
determine baseline performance. Accordingly, observe that the normal for-loop is
employed.

tic

for idx = 1:length(EbNoVec)
    errorStats = helper_qpsk_sim_with_awgn(EbNoVec, idx, ...
        totalErrors, totalBits);
    numErrors(idx) = errorStats(idx,2);
    numBits(idx) = errorStats(idx,3);
end

simBaselineTime = toc;

Calculate the BER.

ber1 = numErrors ./ numBits;

Rerun the simulation for the case in which the Parallel Computing Toolbox is available.
Create a pool of workers.

pool = gcp;
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Determine the number of available workers from the NumWorkers property of pool. The
simulation runs the range of  values over each worker rather than assigning a
single  point to each worker as the former method provides the biggest
performance improvement.
numWorkers = pool.NumWorkers;

Determine the length of EbNoVec for use in the nested parfor loop. For proper variable
classification, the range of a for-loop nested in a parfor must be defined by constant
numbers or variables.
lenEbNoVec = length(EbNoVec);

Allocate memory to the arrays used to store the data generated by the function,
helper_qpsk_sim_with_awgn.

[numErrors, numBits] = deal(zeros(length(EbNoVec),numWorkers));

Run the simulation and determine the execution time.
tic

parfor n = 1:numWorkers

    for idx = 1:lenEbNoVec
        errorStats = helper_qpsk_sim_with_awgn(EbNoVec, idx, ...
            totalErrors/numWorkers, totalBits/numWorkers);
        numErrors(idx,n) = errorStats(idx,2);
        numBits(idx,n) = errorStats(idx,3);
    end

end

simParallelTime = toc;

Calculate the BER. In this case, the results from multiple processors must be combined
to generate the aggregate BER.
ber2 = sum(numErrors,2) ./ sum(numBits,2);

Compare the BER values to verify that the same results are obtained independent of the
number of workers.
semilogy(EbNoVec',ber1,'-*',EbNoVec',ber2,'-^')
legend('Single Processor','Multiple Processors','location','best')
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xlabel('Eb/No (dB)')
ylabel('BER')
grid

You can see that the BER curves are essentially the same with any variance being due to
differing random number seeds.

Compare the execution times for each method.

fprintf(['\nSimulation time = %4.1f sec for one worker\n', ...
    'Simulation time = %4.1f sec for multiple workers\n'], ...
    simBaselineTime, simParallelTime)
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Simulation time = 101.0 sec for one worker
Simulation time = 32.8 sec for multiple workers

In this case where four processor cores were used, the speed improvement factor was
approximately four.
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What Is Different About Using Communications System Toolbox
Online?

 What Is Different About Using Communications System Toolbox Online?
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Visualization and Measurements

• “Scatter Plot and Eye Diagram with MATLAB Functions” on page 3-2
• “EVM and MER Measurements with Simulink” on page 3-7
• “ACPR and CCDF Measurements with MATLAB System Objects” on page 3-15
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Scatter Plot and Eye Diagram with MATLAB Functions
This example shows how to use the Communications System Toolbox to visualize signal
behavior through the use of eye diagrams and scatter plots. The example uses a QPSK
signal which is passed through a square-root raised cosine (RRC) filter.

Scatter Plot

Set the RRC filter, modulation scheme, and plotting parameters.

span = 10;          % Filter span
rolloff = 0.2;      % Rolloff factor
sps = 8;            % Samples per symbol
M = 4;              % Modulation alphabet size
k = log2(M);        % Bits/symbol
phOffset = pi/4;    % Phase offset (radians)
n = 1;              % Plot every nth value of the signal
offset = 0;         % Plot every nth value of the signal, starting from offset+1

Create the filter coefficients using the rcosdesign function.

filtCoeff = rcosdesign(rolloff,span,sps);

Generate random symbols for an alphabet size of M.

rng default
data = randi([0 M-1],5000,1);

Apply QPSK modulation.

dataMod = pskmod(data,M,phOffset);

Filter the modulated data.

txSig = upfirdn(dataMod,filtCoeff,sps);

Calculate the SNR for an oversampled QPSK signal.

EbNo = 20;
snr = EbNo + 10*log10(k) - 10*log10(sps);

Add AWGN to the transmitted signal.

rxSig = awgn(txSig,snr,'measured');
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Apply the RRC receive filter.

rxSigFilt = upfirdn(rxSig, filtCoeff,1,sps);

Demodulate the filtered signal.

dataOut = pskdemod(rxSigFilt,M,phOffset,'gray');

Use the scatterplot function to show scatter plots of the signal before and after
filtering. You can see that the receive filter improves performance as the constellation
more closely matches the ideal values. The first span symbols and the last span symbols
represent the cummulative delay of the two filtering operations and are removed from
the two filtered signals before generating the scatter plots.

h = scatterplot(sqrt(sps)*txSig(sps*span+1:end-sps*span),sps,offset,'g.');
hold on
scatterplot(rxSigFilt(span+1:end-span),n,offset,'kx',h)
scatterplot(dataMod,n,offset,'r*',h)
legend('Transmit Signal','Received Signal','Ideal','location','best')
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Eye Diagram

Display 1000 points of the transmitted signal eye diagram over two symbol periods.

eyediagram(txSig(sps*span+1:sps*span+1000),2*sps)
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Display 1000 points of the received signal eye diagram.

eyediagram(rxSig(sps*span+1:sps*span+1000),2*sps)
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Observe that the received eye diagram begins to close due to the presence of AWGN.
Moreover, the filter has finite length which also contributes to the non-ideal behavior.
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EVM and MER Measurements with Simulink
This model shows how error vector magnitude (EVM) and modulation error rate (MER)
measurements are made using Simulink blocks.

Load the model doc_mer_and_evm from the MATLAB command prompt.

doc_mer_and_evm

This example includes:

• A 16-QAM modulated signal
• An I/Q imbalance
• A constellation diagram block
• EVM Measurement and MER Measurement blocks

The model applies an I/Q imbalance to a QAM-modulated signal at which point MER and
EVM measurements are made. The constellation diagram provides a visual
representation of the effects the imbalance has on the modulation performance
indicators.
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The I/Q Imbalance block is set to that the I/Q amplitude imbalance (dB) is set to 1
and the I/Q phase imbalance (deg) is set to 15.
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The MER Measurement block is set so that it outputs the X-percentile MER value which
is set to 90%.
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The EVM Measurement block is set to output the maximum and 75th percentile EVM
values.
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Run the model.
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You can see that I/Q amplitude and phase imbalance has shifted the constellation
diagram so that each symbol is not exactly equal to its reference symbol (shown in red).
Change the I/Q Imbalance block to see the effects of differing imbalances on the
constellation diagram.

Observe the EVM and MER values. For the default configuration of the model, the mean
MER is approximately 16.9 dB and the 90th percentile MER is 13.9 dB. The RMS EVM
is, approximately, 14.3%, the maximum EVM is 20.4%, and the 75th percentile EVM is
17.7%.
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Change the I/Q amplitude imbalance (dB) value in the I/Q Imbalance block to 2 dB.
You can see that the all the MER and EVM metrics degrade.
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ACPR and CCDF Measurements with MATLAB System Objects
In this section...
“ACPR Measurements” on page 3-15
“CCDF Measurements” on page 3-18

ACPR Measurements

This example shows how to measure the adjacent channel power ratio (ACPR) from a
baseband, 50 kbps QPSK signal. ACPR is the ratio of signal power measured in an
adjacent frequency band to the power from the same signal measured in its main band.
The number of samples per symbol is set to four.

Set the samples per symbol (sps) and channel bandwidth (bw) parameters.

sps = 4;
bw = 50e3;

Generate 10,000 4-ary symbols for QSPK modulation.

data = randi([0 3],10000,1);

Construct a QPSK modulator and then modulate the input data.

qpskMod = comm.QPSKModulator;
x = qpskMod(data);

Apply rectangular pulse shaping to the modulated signal. This type of pulse shaping is
typically not done in practical system but is used here for illustrative purposes.

y = rectpulse(x,sps);

Construct an ACPR System object. The sample rate is the bandwidth multiplied by the
number of samples per symbol. The main channel is assumed to be at 0 while the
adjacent channel offset is set to 50 kHz (identical to the bandwidth of the main channel).
Likewise, the measurement bandwidth of the adjacent channel is set to be the same as
the main channel. Lately, enable the main and adjacent channel power output ports.

acpr = comm.ACPR('SampleRate',bw*sps,...
    'MainChannelFrequency',0,...
    'MainMeasurementBandwidth',bw,...
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    'AdjacentChannelOffset',50e3,...
    'AdjacentMeasurementBandwidth',bw,...
    'MainChannelPowerOutputPort', true,...
    'AdjacentChannelPowerOutputPort',true);

Measure the ACPR, the main channel power, and the adjacent channel power of signal y.

[ACPRout,mainPower,adjPower] = acpr(y)

ACPRout = -9.3071

mainPower = 28.9389

adjPower = 19.6318

Change the frequency offset to 75 kHz and determine the ACPR. Since the
AdjacentChannelOffset property is nontunable, you must first release acpr. Observe
that the ACPR improves when the channel offset is increased.

release(acpr)
acpr.AdjacentChannelOffset = 75e3;
ACPRout = acpr(y)

ACPRout = -13.1702

Release acpr and specify a 50 kHz adjacent channel offset.

release(acpr)
acpr.AdjacentChannelOffset = 50e3;

Create a raised cosine filter and filter the modulated signal.

txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol', sps);
z = txfilter(x);

Measure the ACPR for the filtered signal, z . You can see that the ACPR improves from
-9.5 dB to -17.7 dB when raised cosine pulses are used.

ACPRout = acpr(z)

ACPRout = -17.2245

Plot the adjacent channel power ratios for a range of adjacent channel offsets. Set the
channel offsets to range from 30 kHz to 70 kHz in 10 kHz steps. Recall that you must
first release hACPR to change the offset.
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freqOffset = 1e3*(30:5:70);
release(acpr)
acpr.AdjacentChannelOffset = freqOffset;

Determine the ACPR values for the signals with rectangular and raised cosine pulse
shapes.

ACPR1 = acpr(y);
ACPR2 = acpr(z);

Plot the adjacent channel power ratios.

plot(freqOffset/1000,ACPR1,'*-',freqOffset/1000, ACPR2,'o-')
xlabel('Adjacent Channel Offset (kHz)')
ylabel('ACPR (dB)')
legend('Rectangular','Raised Cosine','location','best')
grid
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CCDF Measurements

This example shows how to use the Complementary Cumulative Distribution Function
(CCDF) System object to measure the probability of a signal's instantaneous power being
greater than a specified level over its average power. Construct the comm.CCDF object,
enable the PAPR output port, and set the maximum signal power limit to 50 dBm.

ccdf = comm.CCDF('PAPROutputPort',true,'MaximumPowerLimit', 50);

Create an OFDM modulator having an FFT length of 256 and a cyclic prefix length of 32.

ofdmMod = comm.OFDMModulator('FFTLength',256,'CyclicPrefixLength',32);
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Determine the input and output sizes of the OFDM modulator object using the info
function of the comm.OFDMModulator object.

ofdmDims = info(ofdmMod)
ofdmInputSize = ofdmDims.DataInputSize;
ofdmOutputSize = ofdmDims.OutputSize;

ofdmDims = 

  struct with fields:

    DataInputSize: [245 1]
       OutputSize: [288 1]

Set the number of OFDM frames.

numFrames = 20;

Allocate memory for the signal arrays.

qamSig = repmat(zeros(ofdmInputSize),numFrames,1);
ofdmSig = repmat(zeros(ofdmOutputSize),numFrames,1);

Generate the 64-QAM and OFDM signals for evaluation.

for k = 1:numFrames
    % Generate random data symbols
    data = randi([0 63],ofdmInputSize);
    % Apply 64-QAM modulation
    tmpQAM = qammod(data,64);
    % Apply OFDM modulation to the QAM-modulated signal
    tmpOFDM = ofdmMod(tmpQAM);
    % Save the signal data
    qamSig((1:ofdmInputSize)+(k-1)*ofdmInputSize(1)) = tmpQAM;
    ofdmSig((1:ofdmOutputSize)+(k-1)*ofdmOutputSize(1)) = tmpOFDM;
end

Determine the average signal power, the peak signal power, and the PAPR ratios for the
two signals. The two signals being evaluated must be the same length so the first 4000
symbols are evaluated.

[Fy,Fx,PAPR] = ccdf([qamSig(1:4000),ofdmSig(1:4000)]);
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Plot the CCDF data. Observe that the likelihood of the power of the OFDM modulated
signal being more than 3 dB above its average power level is much higher than for the
QAM modulated signal.
plot(ccdf)
legend('QAM','OFDM','location','best')

Compare the PAPR values for the QAM modulated and OFDM modulated signals.
fprintf('\nPAPR for 64-QAM = %5.2f dB\nPAPR for OFDM = %5.2f dB\n',...
    PAPR(1), PAPR(2))

PAPR for 64-QAM =  3.65 dB
PAPR for OFDM =  9.44 dB
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You can see that by applying OFDM modulation to a 64-QAM modulated signal, the
PAPR increases by 5.8 dB. This means that if 30 dBm transmit power is needed to close a
64-QAM link, the power amplifier needs to have a maximum power of 33.7 dBm to
ensure linear operation. If the same signal were then OFDM modulated, a 39.5 dBm
power amplifier is required.
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